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Abstract

One of the most challenging fauna to study in situ is the obligate cave fauna because of the
difficulty of sampling. Cave-limited species display patchy and restricted distributions, but it is
often unclear whether the observed distribution is a sampling artifact or a true restriction in
range. Further, the drivers of the distribution could be local environmental conditions, such as
cave humidity, or they could be associated with surface features that are surrogates for cave
conditions. If surface features can be used to predict the distribution of important cave taxa,
then conservation management is more easily obtained. We examined the hypothesis that
the presence of major faunal groups of cave obligate species could be predicted based on
features of the earth surface. Georeferenced records of cave obligate amphipods, crayfish,
fish, isopods, beetles, millipedes, pseudoscorpions, spiders, and springtails within the area of
Appalachian Landscape Conservation Cooperative in the eastern United States (lllinois to
Virginia and New York to Alabama) were assigned to 20 x 20 km grid cells. Habitat suitability
for these faunal groups was modeled using logistic regression with twenty predictor variables
within each grid cell, such as percent karst, soil features, temperature, precipitation, and ele-
vation. Models successfully predicted the presence of a group greater than 65% of the time
(mean = 88%) for the presence of single grid cell endemics, and for all faunal groups except
pseudoscorpions. The most common predictor variables were latitude, percent karst, and the
standard deviation of the Topographic Position Index (TPI), a measure of landscape rugosity
within each grid cell. The overall success of these models points to a number of important
connections between the surface and cave environments, and some of these, especially soil
features and topographic variability, suggest new research directions. These models should
prove to be useful tools in predicting the presence of species in understudied areas.
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Introduction

Species distribution models (SDMs) have become a fundamental tool used to derive geographic
ranges of species and to quantify relationships between species and their environment from
occurrence records (usually either presence or presence/absence) and environmental datasets,
often bioclimatic variables [1,2]. SDMs have been applied to a wide range of terrestrial and
aquatic taxa, and their outcomes are commonly used to inform decisions for a range of applica-
tions in ecology, biogeography and conservation (reviewed in [3]), such as management of
threatened and endangered species, predicting impacts of future climatic change, and predict-
ing biological invasions. However, a methodological constraint of SDMs is insufficient occur-
rence data over a species’ distribution (i.e., niche space), as distributional data are often sparse
or unevenly distributed across a species’ range. Such limited distribution data may lead to spu-
rious predictions, particularly at continental or global scales [4,5]. Regrettably, many species
that are at risk of extinction and are targets of conservation have ranges too restricted for large-
scale correlative SDMs, severely limiting their use in defining conservation priorities. For
example, Platts et al. [5] reported that 55 percent of 733 amphibian species in sub-Saharan
Africa had too few occurrence records for correlative SDMs, including 92 percent of species at
elevated risk of extinction. To overcome this rare species problem, several new approaches
have been developed, such as hierarchical approaches that combine species-specific and com-
munity models [6-8].

Caves contain a unique and phylogenetically diverse fauna. Successful long-term survival
and reproduction in caves is contingent upon a strong environmental filter through which sur-
face-dwelling populations must pass. One important element of this filter is the complete
absence of light, and the surface ancestors of troglobionts (obligate aquatic and terrestrial cave-
dwelling taxa) are usually species that themselves do not have a strong dependence on light,
such as species living in forest leaf litter [9]. However, knowledge of the environmental filter
and of the biology of potential colonizing species is not sufficient to predict the composition of
the cave fauna, even at higher taxonomic levels (e.g., order or family). The fauna of caves is
reduced in taxonomic richness compared to surface communities, especially at higher taxo-
nomic levels [10].

Furthermore, the taxonomic composition of cave communities varies geographically. At the
species level, differences in taxonomic composition are striking. In the eastern U.S., most tro-
globionts have highly restricted distributions, with many known from a single cave [11,12],
and none have been subjects of SDMs. In Europe, a-diversity (local diversity) is only a minor
component of regional aquatic subterranean diversity [13]. In the highly biodiverse Dinaric
karst of central Europe, two beetle families, both with more than 80 species in the region, have
different centers of richness and different overall geographic ranges [14].

Historical factors combined with highly restricted opportunities for dispersal likely play a
large role in explaining the distribution of subterranean species and genera. But, for higher tax-
onomic categories, that typically represent a large number of subterranean lineages [15], other
factors may come into play, such as habitat availability (e.g., number of caves or amount of
karst), geographic position (e.g., distance from the maximum extent of Pleistocene glaciation),
climatic variables (e.g., mean annual temperature and precipitation), and regional hydrology
(e.g., base flow index [BFI], which is the ratio of annual base flow in a river to the total annual
runoff).

Most previous studies in caves have focused on species richness [16], (e.g., the effect of geo-
logical barriers on distribution in the Tennessee cave fauna [12], and range sizes of groundwa-
ter (aquatic cave and interstitial) species in Europe [17]). In the European study, range sizes of
species increased with latitude above 43°N, and that temperature change since the Last Glacial
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Maximum accounted for substantially greater variation than precipitation or habitat availabil-
ity and variability.

In this study, we address the fundamental ecological question of whether surface environ-
mental variables can accurately predict the presence and absence of troglobiotic species.
Because occurrence data are sparse for most troglobiotic species, we take a community-level
modeling strategy that combines data from multiple related species of the same functional clas-
sification in cave ecosystems with environmental predictors. We chose nine faunal groups (five
terrestrial and four aquatic) that are common components of terrestrial and aquatic cave com-
munities: ground beetles (Carabidae), millipedes, pseudoscorpions, spiders, and springtails for
terrestrial species groups, and amphipods (Crangonyctidae and Gammaridae), isopods (Aselli-
dae), crayfishes (Cambaridae), and fishes (Amblyopsidae) for aquatic species groups.

The ways that the above-ground environment influence the cave environment are multifac-
eted, and include short-term (ecological) and long-term (evolutionary) effects. Evolutionary
effects primarily influence the likelihood of successful colonization of caves, while ecological
effects primarily influence the probability of persistence of populations. Both of these effects
are at least partially dependent upon the age of the karst and the caves themselves.

Geological or paleontological evidence that may provide age constraints on karst evolution
in the Appalachian regions are sparse, but some data exist. For example, the Pipe Creek sink-
hole fauna provides an age constraint on the Interior Lowland Plateaus in Indiana, dating back
to the Early Pliocene [18,19]. The Gray Fossil Site in eastern Tennessee places an age constraint
on the karst of the Appalachian Mountains to be at least as old as the Eocene based on palyno-
logical work [20], and palynology of the lignite deposit at Pond Bank, Pennsylvania, possibly
extends this age to be as old as the upper Cretaceous [21]. Species limited to caves in karst ter-
rain are unlikely to be older than the karst landscape in which they reside. Phylogenetic analy-
ses coupled with divergence time estimates suggest that some species/species groups are
relatively young, such as Gyrinophilus cave salamanders (Pleistocene, [22,23]), amblyopsid
cavefishes (Typhlichthys and Amblyopsis, late Pliocene to Pleistocene, [24,25]), while other
groups appear quite old such as Bactrurus amphipods (30-58 mya, [26,27]. A similar broad
range of ages has been reported for aselloid isopods in Europe [28].

We examined a range of such influences, including direct measures of available habitat
(amount of karst-bearing rocks), topography, geographic position, climate, hydrology, and
soil characteristics. In addition to the intrinsic ecological interest in understanding the links
between the subterranean fauna and surface environmental factors, there is a more practical
interest for conservation practitioners. The troglobiotic fauna is one of the most highly
endemic faunas known. The problem is that a relatively small percentage of caves have been
bio-inventoried, even in very well studied areas like Slovenia, where less than 20 percent of the
7,000 known caves have been inventoried [29]. In the eastern U.S., the percentage is even
lower. If knowledge of surface conditions can help predict the presence of subterranean fauna,
it will be an extremely useful tool in conservation planning.

Materials and Methods

Study Area

The Appalachian Landscape Conservation Cooperative (LCC) is one of 22 private-public part-
nerships established by the United States Fish and Wildlife Service to aid in developing land-
scape scale solutions to conservation problems (http://www.lccnetwork.org). The Appalachian
LCC comprises part or all of 15 States, and includes extensive areas of karst within the Interior
Low Plateau, Southwestern-Central and North Central Appalachians, and Ridge and Valley
Level III ecoregions. For this study, we have combined the latter three ecoregions into a unit we
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are calling the Appalachian Mountains because they have similar physiography (Fig 1). The
Appalachian LCC includes all major karst regions east of the Mississippi River except for the
Florida Lime Sinks, and more than half the caves known in the United States [30]. Karst areas
within the Appalachian LCC were delineated using the data compiled by the U.S. Geological
Survey of karst in the United States [31]. The ecoregions of the Interior Low Plateau and Appa-
lachian Mountains were analyzed separately because of the well documented faunal [12,32]
and geological differences, including regional lithology and cave geometry [33].

Obligate Cave-Dwelling Fauna Occurrences

We gathered occurrence data on the cave-limited terrestrial and aquatic troglobiotic species
from a variety of sources, including the scientific literature, existing biodiversity databases, per-
sonal records of the authors, and museum accessions. Literature records were compiled from
peer-reviewed journals, books, conference proceedings, theses and dissertations, government
reports, and caving organizational newsletters. This included keyword searches of IST Web of
Science, Zoological Record, and Google Scholar. We also acquired occurrence records from
biodiversity databases maintained by State Natural Heritage programs and The Nature Conser-
vancy (for Tennessee). All occurrence records were incorporated into an ArcGIS (v10) shape-
file. We attempted to georeference each occurrence record from published sources and with
the assistance of state cave surveys. We included georeferenced records for troglobiotic taxa for
which species identifications were not available but were identified at least to the level of genus.
The resulting database had 11,134 records at the time of the analysis (July 2015), 10,518 of
which had geographic coordinates available for mapping, and including 9833 records identified
to species for 750 taxa. These are not public records due to the sensitivity of the information,
data sharing agreements, as well as restrictions under the Federal Cave Resources Protection
Act of 1988. Researchers interested in this data set may contact ML Niemiller for data access.
Occurrence records were translated into a presence-absence matrix, and identified by location
(e.g., grid cell id) within a 20 x 20 km grid generated using GIS and encompassing the study
area. Abundance records were generally not available, and when the number of individuals in a
collection was known, it was unclear whether this reflected abundance, or, more commonly, a
limit on the number of individuals collected due to conservation concerns. Data for each of the
nine species groups were pooled before modeling (i.e., ‘classification-then-modeling’ approach
[34]). Endemism was defined in relationship to the 20 x 20 km grid cells. A cell with at least
one species endemic to that grid was counted as a grid cell occupied by endemic taxa.

Predictor Variables

The following variables were calculated for each 20 x 20 km grid cell and used as predictors of
occurrence of the cave-dwelling fauna:

1. Percent area of carbonate bedrock representing potential karst, calculated from the USGS
national karst map database [31].

2. Length (and log length) of the edge between carbonate and non-carbonate bedrock, calcu-
lated from the USGS national karst map database [31]. For the purposes of analysis, the
length and log length of the karst/non-karst boundary are treated as one variable.

3. Mean and standard deviation of elevation, using a 1 x 1 km grid, interpolated from 90 m res-
olution Shuttle Radar Topography Mission (SRTM) elevation data, available at https://Ita.
cr.usgs.gov/SRTM2.
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Fig 1. Map of study area. Areas of karst are shaded and overlain by a 20 x 20 km grid, with karst grid cells in the Appalachian Mountains and in the
Interior Low Plateau outlined in green. Black dots show caves with known troglobionts. Adapted from [31].

doi:10.1371/journal.pone.0160408.g001

PLOS ONE | DOI:10.1371/journal.pone.0160408 August 17,2016 5/19



@’PLOS ‘ ONE

Predicting Occurrence of Cave-Inhabiting Fauna

4. Mean and standard deviation of Topographic Position Index (TPI), a measure of local relief
which represents the difference between the mean elevation of a local 1 x 1 km grid cell and
the mean elevation of cells in a surrounding neighborhood. It was calculated using a moving
window of an annulus with a 2 km inner radius and a 10 km outer radius, using the Land
Facet Corridor Designer Extension for ArcGIS [35].

5. Geographic position, using the centroids of the 20 x 20 km cells.

6. Mean and standard deviation of surface air temperature, calculated from 30-year climate
normals (1960-1990) at 1 km resolution and available from the WorldClim bioclimatic
dataset (http://www.worldclim.org/bioclim).

7. Mean and standard deviation of precipitation, calculated from 30-year climate normals
(1960-1990) at 1 km resolution and available from the WorldClim bioclimatic data set
(Available: http://www.worldclim.org/bioclim).

8. Mean and standard deviation of base flow index (BFI), the component of stream flow that
can be attributed to groundwater discharge into streams, and expressed as a percentage. The
raw data are from the USGS Open File Report. Available: http://water.usgs.gov/GIS/
metadata/usgswrd/XML/bfi48grdl.xml. Values for 20 x 20 cells were interpolated from BFI
point values estimated from USGS stream gages [36] and computed using an automated
hydrograph separation program (Available: http://www.usbr.gov/pmts/hydraulics_lab/
twahl/bfi/index.html).

9. Above ground forest biomass in megagrams (Mg) per hectare, from data, Available: http://
data.fs.usda.gov/geodata/rastergateway/biomass/index.php.

10. Soils data originally derived from the USDA NRCS STATSGO soils database, Available:
http://water.usgs.gov/GIS/metadata/usgswrd/XML/ussoils xml, including attributes of soil
water capacity, permeability, depth to water, thickness, bulk density, and percent organic
matter. A principal components analysis (PCA) was performed with the software SAS v9.4
(SAS Institute Inc.) using these six variables, and resulted in three PC axes that were used
in further analysis (Table 1). The first axis reflects water retention and transmission capac-
ity of the soil; the second reflects the organic content of the soil (which correlates with shal-
low water tables); and the third reflects the parent material which influences thickness and
density. The three axes explained 74 percent of the total variation in the data.

Statistical Analysis

All statistical analyses were done using PROC LOGISTIC in SAS v9.4 (SAS Institute Inc.). We
converted the counts of records in each 20 x 20 km grid cell for each species group to an indica-
tor variable of presence or absence of the species group in each cell. Analyses were limited to
those cells with at least one record of a troglobiont, irrespective of group. This eliminated non-
karst areas, which have no karstic caves, as well as karst areas either without known caves or
without biological records. Zeroes in the analysis were thus cells with troglobionts, but none
from the group being considered. It is unlikely that there is bias of these zeroes with respect to
the physical variables used in the analysis. There may be a collection bias in that some States
are better sampled (e.g., Maryland and Tennessee) than others (e.g., Pennsylvania and New
York) but this does not result in the “true zeroes” as defined above.

A selection procedure based on all possible combinations of predictors in logistic regression
models was used to identify a suite of predictive variables. For each possible set of predictors
(2°° combinations), a likelihood score (chi-square) statistic was calculated. The scores for the
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Table 1. Factor loadings of soil characteristics in the 20 X 20 km grid for the study of the first three principle components.

Water capacity
Permeability
Depth to water
Thickness

Bulk density

% organic matter

doi:10.1371/journal.pone.0160408.t001

Component 1 Component 2 Component 3
0.5168 0.1906 -0.4101
-0.4989 -0.1926 0.4884
-0.4241 0.5120 -0.1725
0.4416 0.0059 0.5243
0.3071 0.3566 0.5290
0.1222 -0.7330 -0.0938

models were plotted against the number of predictors. The best model was the model with the
highest likelihood score before the inflection point, where adding another variable had little
effect on increasing the likelihood score. This model was then reviewed for adequacy using
receiver operating characteristic (ROC) curves, Hosmer-Lemeshow lack of fit test [37], and the
p-values of the Wald tests for significance of the predictor variables. Finally, a leave-one-out
cross-classification table was used to identify the optimal cutoff for converting predicted proba-
bilities to predicted presence or absence. Optimal is defined here as the cutoff value with the
highest joint sensitivity and specificity. The cutoff was used to convert the predicted probabili-
ties to predicted occurrences; these were used to develop confusion matrices indicating the pro-
portion of observations misclassified by the model.

For each species group, the best model was used to predict the probability that the group
would be observed in all grid cells for which karst is present. The coefficients of the models are
reported as standardized estimates for comparative purposes.

Results

A total of 436 20 x 20 km cells had at least one troglobiotic species reported from caves (Fig 1).
The highest frequency of cell occupancy was 77.8 percent by amphipods in the Appalachian
Mountains and 71.4 percent by ground beetles in the Interior Low Plateau. Fishes were nearly
absent from the Appalachian Mountains; they occur only in three grid cells, all near the bound-
ary with the Interior Low Plateau. Crayfishes were nearly as scarce in the Appalachians, occur-
ring in only seven grid cells, all occupied by a single species from West Virginia. Endemic taxa
were found in 33.5 percent of grid cells, a remarkably high frequency (Fig 2).

Significant explanatory variables for each of the nine species groups (amphipods, isopods,
crayfish, fish, ground beetles, millipedes, pseudoscorpions, spiders, and springtails) and single
cell endemics are summarized in Table 2.

Four of the 19 variables had a consistent negative effect in those cases where there was any
significant effect—the standard deviation of the base flow index (BFI), PC1, and PC3 for soil.
Standard deviation of BFI measures the spatial variability of baseflow contributions to streams,
which reflects the diversity of hydrogeologic environments within a grid cell. This would indi-
cate that regions of more variable hydrogeologic conditions will result in a lower probability of
species occurrence. PC1 is most heavily loaded with soil water capacity and permeability (nega-
tively, Table 1), and overall is a measure of soil drainage. This negative relationship between
group occurrence and soil drainage only occurred once (for the asellid isopods); the other 15
cases were not significant (Table 2). PC3 is most heavily loaded with soil thickness and density,
suggesting that sites with thin soils are more likely to have cave animals.

There were environmental variables with a consistent positive relationship with the pres-
ence of the different groups of organisms—mean precipitation, standard deviation of TP, per-
cent karst, and PC2 of soil. Mean precipitation may be related to productivity, especially net
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Fig 2. Frequency of occupancy of different groups in cells with at least one troglobiotic species. Values for the Interior
Low Plateau are shown in blue, and values for the Appalachian Mountains are shown in red.

doi:10.1371/journal.pone.0160408.g002

primary productivity, and in turn allochthonous organic matter inputs, which may be limiting
for many species [16]. Likewise, amount of available habitat (measured by the percent of the
areal extent of karst), may be limiting, at least in terms of species richness [38]. PC2 of soil is
positively loaded on depth to water and negatively on organic matter, thus it is a parameter
that measures the significance of well-drained soils with relatively lower organic matter. The
TPI itself is a measure of the relative local elevation position of each square kilometer (a local
high or low with respect to the surrounding terrain), thus its standard deviation within a 20 x
20 km cell is a measure of landscape roughness, or rugosity. Latitudinal position was among
the variables that showed an inconsistent effect with respect to positive or negative impact on
group occurrence.

There were also differences between the Interior Low Plateau and the Appalachian Moun-
tains with respect to variables affecting presence or absence of particular species groups
(Table 3). In the Interior Low Plateau, percent karst, y-coordinate (latitude), and the standard
deviation of BFI were the most important, while in the Appalachian Mountains mean BFI,
mean elevation, and standard deviation of TPI were most likely to affect the likelihood of the
presence of a particular species group. For aquatic species groups (amphipods, asellid isopods,
crayfishes, and fishes), latitude and percent karst were most important, while the standard
deviation of TPI was most important for terrestrial species.

For endemism, the explanatory variables included 13 of the 19 predictor variables; only the
standard deviation of elevation, mean and standard deviation of BFI, length of the karst/non-
karst edge, and PC1 for soil were not informative given the remaining variables in the model.
However, the model performed poorly at predicting the occurrence of endemics (Table 3).

In general, the predictive models were able to predict presence or absence correctly between
66 and 87.9 percent of the time for the occurrence of the four aquatic species groups and the
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Table 3. Cross-classification results from each model. Prob level = value of the cutoff of the probability of observing presence used to classify each pre-
diction into either an event (presence) or non-event (absence). Correct = number of events and non-events properly classified when comparing predicted to
observed. Incorrect = number of non-events improperly classified as events and vice versa. Percentages Correct: overall percentage of observations cor-
rectly classified. Sensitivity: percentage of actual events correctly identified as such and is complementary to the false negative rate. Specificity: percentage
of non-events which are correctly identified as such and is complementary to the false positive rate. False Positive Percentage: percent of predicted event
responses that were observed as nonevents. False Negative Percent: percent of predicted nonevent responses that were observed as events.

Taxon Region Prob Correct Incorrect Percentages
Level Event | Non-Event| Event |Non-Event| Correct | Sensitivity | Specificity False False
Positive Negative

Amphipod Mountains 0.22 153 3 41 1 78.8 99.4 6.8 21.1 25
Plateaus 0.38 132 32 59 15 68.9 89.8 35.2 30.9 31.9
Asellid Isopod | Mountains 0.34 122 11 58 7 67.2 94.6 15.9 32.2 38.9
Plateaus 0.32 158 18 58 4 73.9 97.5 237 26.9 18.2
Crayfish Mountains 0.04 6 168 23 1 87.9 85.7 88 79.3 0.6
Plateaus 0.52 71 104 26 37 73.5 65.7 80 26.8 26.2
Fish Plateaus 0.44 71 103 38 26 73.1 73.2 73 34.9 20.2
Pseudo Mountains 0.44 15 140 13 29 78.7 34.1 91.5 46.4 17.2
scorpion Plateaus 0.62 39 131 8 58 72 40.2 94.2 17 30.7
Spider Mountains 0.34 120 13 56 9 67.2 93 18.8 31.8 40.9
Plateaus 0.36 108 49 66 15 66 87.8 42.6 37.9 23.4
Springtail Mountains 0.4 106 36 43 13 71.7 89.1 45.6 28.9 26.5
Plateaus 0.36 156 5 76 1 67.6 99.4 6.2 32.8 16.7
Millipede Mountains 0.48 74 63 36 25 69.2 74.7 63.6 32.7 28.4
Plateaus 0.38 132 33 64 9 69.3 93.6 34 32.7 21.4
Ground Beetle | Mountains 0.46 65 70 36 27 68.2 70.7 66 35.6 27.8
Plateaus 0.28 169 8 60 1 74.4 99.4 11.8 26.2 11.1
Endemics Mountains 0.6 20 121 9 48 71.2 29.4 93.1 31 28.4
Plateaus 0.52 25 145 13 55 71.4 31.3 91.8 34.2 27.5

doi:10.1371/journal.pone.0160408.t003

five terrestrial species groups (Table 3). Since some empty cells may be empty because of insuf-
ficient collecting (false negatives), the correct prediction of actual occupancy (sensitivity in
Table 3) is more informative about the performance of the models. Sensitivity ranges from 29.4
percent to 99.4 percent (Table 3). All but five of the 19 sensitivity measures were greater than
70 percent. The model did a poor job of predicting the presence/absence of pseudoscorpions in
both regions and the presence/absence of endemics in both regions. Model fit, as measured by
sensitivity, did not differ in the Interior Low Plateau and the Appalachian Mountains, and did
not differ between aquatic and terrestrial species groups, and excluding pseudoscorpions and
endemics, the overall mean was 87.6 percent (Table 3).

For amphipods in both the Appalachian Mountains and the Interior Low Plateau, amount
of habitat (measured by percent karst), and both the mean and standard deviation of TPI
(topographic position index) were associated with their presence. The probability of finding an
amphipod in the Interior Low Plateau, but not the Appalachian Mountains, increases with lati-
tude. The standard deviation of BFI (base flow index) is important in the Interior Low Plateau,
and more diverse groundwater contributions to streams, which could reflect sensitivity to
floods and droughts, decreases the likelihood of finding a troglobiotic amphipod. Temperature,
precipitation, and elevation were important predictors of Appalachian Mountain amphipods.
The correspondence between grid cells with troglobiotic amphipods (Fig 3A) and those pre-
dicted to have troglobiotic amphipods with a probability greater than 0.6 (Fig 3B) is high. For
unsampled karst grid cells, Pennsylvania and New York are predicted to have amphipods in
many grid cells (Fig 3C).
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Fig 3. Maps of observed and predicted distribution of troglobiotic amphipods (largely the genera Stygobromus and Crangonyx) in the study
area. A. Observed distribution of troglobiotic amphipods in 20 x 20 km grid. B. Predicted probabilities of occurrence of troglobiotic amphipods in those grid
cells that have observed troglobionts. C. Predicted probabilities of occurrence of troglobiotic amphipods in all grid cells with karst. See Table 2 for details
of the model and Table 3 for goodness of fit.

doi:10.1371/journal.pone.0160408.g003

Isopods share many subterranean habitats with amphipods (especially streams and epi-
karst), and factors affecting the presence/absence of asellid isopods overlap with those predict-
ing the presence/absence of amphipods. Shared predictors include mean temperature,
precipitation, elevation, latitude, longitude, available habitat, and TPI. On the other hand, soil
characteristic are important predictors for isopods but not amphipods (Table 2). Finally, above
ground forest biomass was an important predictor of presence of troglobiotic isopods in the
Interior Low Plateau. The distribution of observed asellid isopod occurrence and predicted
probabilities of asellid isopod occurrence are shown in S1 Fig.

Only one crayfish species—Cambarus nerterius—is known from the Appalachian Moun-
tains (southern West Virginia) so little inference can be made from the Appalachian regional
analysis. Not surprisingly, geographic position is an important predictor. For the Interior Low
Plateau, there are nine variables that add to the predictive power of the model. These include
latitude, longitude, TPI, BFI, elevation, soil, and amount of available habitat (Table 2). The dis-
tribution of observed crayfish occurrence and predicted probabilities of crayfish occurrence are
shown in S2 Fig.

Cavefish only occur in three grid cells in the Appalachian Mountains, so only the Interior
Low Plateau was analyzed. Temperature, elevation, and precipitation were all important and
somewhat surprisingly, probability of finding a cavefish declined with increasing temperature
and showed a concomitant increase with latitude. Unlike the other aquatic groups, the length
of the karst/non-karst edge had a negative effect (Table 2). The distribution of observed cave-
fish occurrence and predicted probabilities of cavefish occurrence are shown in S3 Fig.

In both regions, mean elevation, and PC3 of soil (see Table 1) were important predictors of
presence/absence of carabid beetles. Latitude was an important predictor for the Interior Low
Plateau, but not for the Appalachian Mountains (Table 2). The correspondence between grid
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Fig 4. Maps of observed and predicted distribution of troglobiotic ground beetles (largely the genus Pseudanophthalmus) in the study area. A.
Observed distribution of troglobiotic ground beetles in 20 x 20 km grid. B. Predicted probabilities of occurrence of troglobiotic ground beetles in those grid
cells that have been observed beetles. C. Predicted probabilities of occurrence of troglobiotic ground beetles in all grid cells with karst. See Table 2 for
details of the model and Table 3 for goodness of fit.

doi:10.1371/journal.pone.0160408.g004

cells with troglobiotic ground beetles (Fig 4A) and those predicted to have troglobiotic amphi-
pods with a probability greater than 0.6 (Fig 4B) is high. For unsampled karst grid cells, a num-
ber of grid cells in the Interior Low Plateau are expected to have ground beetles. It is interesting
to note that most sampled grid cells in the Interior Low Plateau have ground beetles (Fig 2).

For both regions, above ground forest biomass (Mg/ha), latitude, and amount of habitat
(percent karst) are important predictors of the presence/absence of millipedes (Table 2). In
the case of latitude, the likelihood of finding millipedes increases, rather than decreases with
increasing latitude. It is also noteworthy that variation in parameters (above ground biomass,
TPI, precipitation, elevation, and BFI) has an impact on the probably of finding millipedes.

In the case of TPI and elevation, the effect is positive; for the others it is negative. The distribu-
tion of observed millipede occurrence and predicted probabilities of millipede occurrence are
shown in $4 Fig.

The models of pseudoscorpion occurrence for the two regions have little in common, shar-
ing only a positive effect of the log of the length of the karst/non-karst boundary. The most sig-
nificant aspect of the pseudoscorpion models is that they failed, in the sense that their ability
to predict where pseudoscorpions were known from was very weak—only 34 to 40 percent of
grid cells known to have troglobiotic pseudoscorpions were predicted to have them (Table 3).
The distribution of observed pseudoscorpion occurrence and predicted probabilities of pseudo-
scorpion occurrence are shown in Fig 5. Since its predictive power is weak, predictions for
unsampled karst grid cells are not shown.

Although both models have strong predictive power for spiders, there are no significant var-
iables shared between the two regions (Table 2). The Appalachian Mountains are dominated
by measures of topographic relief as significant variables, including elevation and TPI (both
means and standard deviation); significant variables in the Interior Low Plateau are dominated
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Fig 5. Maps of observed and predicted distribution of troglobiotic pseudoscorpions in the study area. A. Observed distribution of troglobiotic
pseudoscorpions in 20 x 20 km grid. B. Predicted probabilities of occurrence of troglobiotic pseudoscorpions in those grid cells that have been
sampled. Because of poorness of fit (Table 3), predicted probabilities of occurrence of troglobiotic pseudoscorpions in all grid cells with karst are not
shown. See Table 2 for details of the model.

doi:10.1371/journal.pone.0160408.g005

by measures of the water budget—precipitation and BFI. The distribution of observed spider
occurrence and predicted probabilities of spider occurrence are shown in S5 Fig.

In the case of Collembola, the two regions share two predictor variables—PC2 for soil and
the standard deviation for TPI. For the Appalachian Mountains, elevation and TPI (both
means and standard deviations) are important, while in the Interior Low Plateau, both lati-
tude and karst/non-karst edge length are important, and the likelihood of finding springtails
increases with latitude and decreases with increasing karst/non-karst edge length. The distri-
bution of observed springtail occurrence and predicted probabilities of occurrence are shown
in S6 Fig.

As was the case with pseudoscorpions, the model for endemics was essentially a failed
model, only correctly predicting occurrences between 29 and 31 percent of the time (Table 3).
Interestingly, latitude was not a significant factor in either the Appalachian Mountains or the
Interior Low Plateau. The distribution of observed endemic occurrence and predicted probabil-
ities of endemic occurrence are shown in S7 Fig.
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Discussion
Biological Significance of Predictor Variables

Overall, we were successful in predicting the presence/absence of terrestrial and aquatic troglo-
biotic taxonomic groups in a 20 x 20 km grid overlying the karst regions of the Interior Low Pla-
teau and Appalachian Mountains from predictors derived from the surface environment
(Tables 2 and 3). This result re-emphasizes the strong dependence of cave fauna on surface fea-
tures. These surface-subsurface connections take a variety of forms. Except in cases of chemoau-
totrophy [39], all organic matter in caves originates at the surface, and so cave fauna should be
sensitive to changes in surface productivity (and the consequent subsurface inputs of organic
matter, reflected in PC2 of the soil data). Temperature and precipitation set the broad outlines
of the amount of surface primary productivity, and the moderate dependence on precipitation
(both mean and standard deviation) and temperature (mean but rarely standard deviation) sug-
gest the importance of productivity in determining the presence/absence of different groups of
cave organisms (Table 2), a point also made by Culver et al. [16] in the context of terrestrial tro-
globiotic species richness in Europe and eastern U.S. Seasonality of both temperature and pre-
cipitation (expressed in their standard deviations) likewise influences productivity.

Elevation, together with latitude and longitude, is a controlling factor of temperature and
precipitation. Mean elevation, but not its standard deviation, was often included in the list of
significant predictor variables of species groups (Table 2); this may be another reflection of the
importance of productivity. Another variable that may be connected with amount of organic
carbon and nutrients available to cave-dwelling species is the standing crop biomass. Mean for-
est biomass (Mg/ha) was a moderately important predictor of presence/absence. Alternatively,
current forests may be a good predictor of forests existing at the time troglobionts colonized
karst in the region, and hence colonization potential. Forest litter is the habitat of many of the
immediate ancestors of terrestrial cave species [9].

The soil is an important zone of processing of organic matter that enters caves through per-
colating water [40], and caves, especially those that are shallow, are embedded in a soil matrix,
just as Gers [41] pointed out was the case for small cavities in talus slopes and elsewhere (the
milieu souterrain superficiel). Which aspects of the soil are most important for the cave fauna
remains elusive. The results presented here suggest that poorly drained soils with high organic
content are unlikely to have terrestrial troglobionts (high loadings on PC2 [Table 1]). The con-
nections between the soil and caves, both in terms of fauna and for energy transfer remain a
largely unstudied area.

Other predictor variables, especially percent karst in a grid cell, are a measure of the amount
of potential habitat. It was one of the most important predictor variables in this study (Table 2),
and amount of habitat, measured either by percent karst or number of caves, has been found to
be an important predictor variable of species richness in other regions and scales [30, 38, 42].
The variable designed to measure the degree of karst dissection—the length of the karst/non-
karst contacts—proved to be generally unimportant (Table 3). On the other hand, one of the
major differences between karst in the Appalachian Mountains and Interior Low Plateau is its
degree of karst dissection—the Appalachian mountain karst is much more discontinuous [32].
It is possible that range sizes differ according to the degree of karst dissection, either at the local
or regional scale, but that was not the focus of this study.

Both the mean base flow index (BFI) and its standard deviation were of moderate impor-
tance in predicting the presence of both terrestrial and aquatic groups. While BFI itself may be
associated with productivity because of its connection with precipitation, the standard devia-
tion of BFI is associated with variability in hydrogeologic conditions, reflecting sensitivity to
floods and droughts. Flooding has a dual role in caves—it is an important source of organic
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matter, but it is also a cause of environmental stress [43]. In this study, the BFI had a negative
effect on the likelihood of finding several species groups present (Table 3).

Latitude was often a predictor variable for the presence/absence of a species group, but it
was not always the case that the probability decreased with increasing latitude. Species richness
and perhaps numerical abundance of troglobionts typically reaches a maximum, not in the
tropics, but in mid-temperate latitudes (e.g., the Pyrenees and Dinaric karst in Europe [16, 44].
However, we found that several groups, e.g., asellid isopods in both ecological regions, were
more frequent in the northern part of the study area, e.g., Indiana and West Virginia). This
may be the result of historical distribution patterns of surface progenitors or the effects of cli-
mate change during the Pleistocene, which are widely held to have forced species into caves [9,
45, 46] and which may have had an especially strong effect near the Pleistocene ice margin, as
Barr [47] suggested for the Mitchell Plain in southern Indiana. There were also a few cases
where longitude was a predictor of the presence/absence of groups (Table 3), with probability
of presence decreasing in a westward direction (Table 2). Perhaps this is the result of a general
decrease in precipitation with increase in longitude.

A final pair of variables, the mean and standard deviation of TPI (topographic position
index) were predictors of presence/absence, especially the standard deviation of TPI which
ranked first, along with percent karst as the most frequent predictor (Table 2). TPI is a measure
of localized relief and so its standard deviation measures variability of relief, or rugosity. It is
possible that rugosity in the landscape promotes cave development, but that remains to be
demonstrated.

Failures in Prediction—Pseudoscorpions and Endemics

We were unable to generate a predictive model for the presence/absence of pseudoscorpions or
for endemic species (Table 3). Endemics and pseudoscorpions share an important feature—
their frequency of grid occupancy is the lowest, except for fishes and crayfishes in the Appala-
chians (Fig 2). In the cases of fishes and crayfishes, there are likely historical reasons for their
near absence in the Appalachians, while in the case of pseudoscorpions and endemics, it is
likely to be restricted dispersal. Many pseudoscorpions are single grid cell or even single cave
endemics. Christman et al. [11] report that 69 percent of pseudoscorpions from the eastern U.
S. are single cave endemics, the highest reported taxon for any group except the poorly studied
mites. Thus, it may be the case that pseudoscorpions are missing from many grid cells due to
lack of colonization and/or dispersal. It may also be because pseudoscorpions are often in
found in dry rather than wet organic matter. As a result, variation in pseudoscorpion species’
responses to environmental parameters makes model development difficult.

Endemics are by nature a different grouping, and by definition restricted in range. Some-
what paradoxically, the failure of the model to predict the occurrence of endemism may be
because spatial effects (i.e., spatial autocorrelation), were not taken into account. Christman
etal. [11] showed this to be the case in their study of terrestrial single cave endemics in the east-
ern U.S. The implication of their study is that endemism results from subterranean dispersal
and isolation of peripheral populations, rather than direct colonization from the surface.

Conclusions

The demonstration that surface features can be good predictors of the presence or absence of
different groups of obligate cave-dwelling species is the most important finding of our study.
The somewhat coarse scale of the analysis (20 x 20 km) was necessitated by the amount of data,
but even at this relatively coarse scale, the model was predictive. It is perhaps disappointing
that the connections were not simpler and more easily explainable, but this is not really
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surprising given the finding of multi-causality of Eme et al. [44] for groundwater crustacean
biodiversity in Europe. The particular variables involved, especially TPI, suggest new avenues
of approach to the study of the biogeography of the cave fauna. And finally, the models them-
selves provide a useful way for land managers to predict features of the subterranean fauna,
before the laborious and expensive prospect of sampling. Such models should make identifica-
tion and protection of the cave fauna both feasible and efficient.
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